Linearized ADMM for Non-convex Non-smooth Optimization with Convergence Analysis

نویسندگان

  • Qinghua Liu
  • Xinyue Shen
  • Yuantao Gu
چکیده

Linearized alternating direction method of multipliers (ADMM) as an extension of ADMM has been widely used to solve linearly constrained problems in signal processing, machine leaning, communications, and many other fields. Despite its broad applications in non-convex optimization, for a great number of non-convex and non-smooth objective functions, its theoretical convergence guarantee is still an open problem. In this paper, we study the convergence of an existing two-block linearized ADMM and a newly proposed multi-block parallel linearized ADMM for problems with non-convex and nonsmooth objectives. Mathematically, we present that the algorithms can converge for a broader class of objective functions under less strict assumptions compared with previous works. Our proposed algorithm can update coupled variables in parallel and work for general non-convex problems, where the traditional ADMM may have difficulties in solving subproblems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Accelerated Linearized Alternating Direction Method of Multipliers

We present a novel framework, namely AADMM, for acceleration of linearized alternating direction method of multipliers (ADMM). The basic idea of AADMM is to incorporate a multi-step acceleration scheme into linearized ADMM. We demonstrate that for solving a class of convex composite optimization with linear constraints, the rate of convergence of AADMM is better than that of linearized ADMM, in...

متن کامل

A Majorized ADMM with Indefinite Proximal Terms for Linearly Constrained Convex Composite Optimization

This paper presents a majorized alternating direction method of multipliers (ADMM) with indefinite proximal terms for solving linearly constrained 2-block convex composite optimization problems with each block in the objective being the sum of a non-smooth convex function (p(x) or q(y)) and a smooth convex function (f(x) or g(y)), i.e., minx∈X , y∈Y{p(x) + f(x) + q(y) + g(y) | A∗x + B∗y = c}. B...

متن کامل

A General Inertial Proximal Point Algorithm for Mixed Variational Inequality Problem

In this paper, we first propose a general inertial proximal point algorithm (PPA) for the mixed variational inequality (VI) problem. Based on our knowledge, without stronger assumptions, convergence rate result is not known in the literature for inertial type PPAs. Under certain conditions, we are able to establish the global convergence and nonasymptotic O(1/k) convergence rate result (under c...

متن کامل

A General Inertial Proximal Point Method for Mixed Variational Inequality Problem

In this paper, we first propose a general inertial proximal point method for the mixed variational inequality (VI) problem. Based on our knowledge, without stronger assumptions, convergence rate result is not known in the literature for inertial type proximal point methods. Under certain conditions, we are able to establish the global convergence and a o(1/k) convergence rate result (under cert...

متن کامل

A Block-wise, Asynchronous and Distributed ADMM Algorithm for General Form Consensus Optimization

Many machine learning models, including those with non-smooth regularizers, can be formulated as consensus optimization problems, which can be solved by the alternating direction method of multipliers (ADMM). Many recent efforts have been made to develop asynchronous distributed ADMM to handle large amounts of training data. However, all existing asynchronous distributed ADMM methods are based ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1705.02502  شماره 

صفحات  -

تاریخ انتشار 2017